Complex Numbers V Cheat Sheet

Finding $\mathbf{n}^{\text {th }}$ Roots of Complex Numbers

Any complex number of the form $z^{n}=a\left(\right.$ where z and a are complex numbers and $\left.n \epsilon \mathbb{Z}^{+}\right)$has n distinct $n^{\text {th }}$ roots. These roots can be found by utilising De Moivre's theorem.
Example 1: Solve the equation $z^{3}=2+2 i$ and plot the solutions on an Argand diagram. Give your answers in modulus-argument form.

Firstly, write $2+2 i$ in exponential form.	$\begin{gathered} \|2+2 i\|=\sqrt{2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2} \\ \arg (2+2 i)=\arctan \left(\frac{2}{2}\right)=\frac{\pi}{4} \\ 2+2 i=2 \sqrt{2} e^{\frac{\pi}{4} i} \end{gathered}$
To represent all the possible solutions for z^{3}, add $2 \pi k i$ (where $k \in \mathbb{Z}$) to the argument.	$z^{3}=2 \sqrt{2} e^{\frac{\pi}{4}+2 \pi k i}=2 \sqrt{2} e^{\pi i\left(2 k+\frac{1}{4}\right)}=2 \sqrt{2} e^{\pi i\left(\frac{8 k+1}{4}\right.}$
Next, take the cube root of the exponential form. Knowing that there will be three distinct cube roots, substitute $k=0, k=1$, and $k=2$ separately to find all the solutions. We want arguments in the range $-\pi<\theta \leq$ π, so subtract 2π from $\frac{17 \pi}{12}$.	$\begin{array}{lc} k=0, & z=(2 \sqrt{2})^{\frac{1}{3}} e^{\pi i} \frac{i\left(\frac{k+1}{12}\right)}{12} \\ k=1, & z=\left(2 \sqrt{2} \frac{1}{3} \frac{\pi i}{3} e^{\frac{\pi}{12}}\right. \\ k=2, & z=(2 \sqrt{2})^{\frac{1}{3}} e^{\frac{9 \pi i}{12}}=(2 \sqrt{2})^{\frac{1}{3} e^{\frac{3 \pi i}{4}}} \\ \text { Thus, } & z=(2 \sqrt{2})^{\frac{1}{3} e^{\frac{1}{3}} \frac{17 \pi i}{12}}=(2 \sqrt{2})^{\frac{1}{3} e^{-\frac{7 \pi i}{12}}} \\ z_{1}=(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{\pi}{12}\right)+i \sin \left(\frac{\pi}{12}\right)\right), \\ z_{2}=(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right), \\ z_{3}=(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(-\frac{7 \pi}{12}\right)+i \sin \left(-\frac{7 \pi}{12}\right)\right) \\ =(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{7 \pi}{12}\right)-i \sin \left(\frac{7 \pi}{12}\right)\right) \end{array}$

Plot the solutions on an Argand

Notice that the three roots form a regular equilateral triangle. The general form of this result holds true for all complex roots

The n distinct solutions of $z^{n}=a$ form the vertices of a regular n-gon.

$$
\text { The arguments corresponding to each vertex are separated by an angle of } \frac{2 \pi}{n}
$$

Some questions may require you to draw the vertices of an n-sided polygon that is not centred at the origin. The equations for these will be of the form

$$
(z-c)^{n}=a,
$$

Where z and a are complex numbers, $n \in \mathbb{Z}$, and is the centre of the polygon. In this scenario, solve as above for $z-c$ then add c to these solutions (for $z-c$) in order to find the solutions for z.

Example 2: Find the roots of the equation $(z-i)^{3}=2+2 i$, giving your answers correct to 3 s.f. Identify that the solution eq z will fors $2+2$, ging your answers cor | Identify that the solutions for z will form a | From Example 1 , we know the solutions for z are |
| :--- | ---: |
| triangle ectred at $(0,1)$. This is a | |
| translation of the triangle in Example 1 by | $z_{1}=(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{\pi}{12}\right)+i \sin \left(\frac{\pi}{12}\right)\right)$, | +1 in the imaginary axis. $\quad z_{2}=(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)$ $\quad z_{3}=(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{7 \pi}{12}\right)-i \sin \left(\frac{7 \pi}{12}\right)\right)$

Add i to each of the solutions for z with a calculator. $\begin{aligned} z_{1}+i & =(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{\pi}{12}\right)+i \sin \left(\frac{\pi}{12}\right)\right)+ \\ & =1.37+137 i\end{aligned}$ $=1.37+1.37$
$z_{2}+i=(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)+$
$=-1.00+2.00 i$,
$z_{3}+i=(2 \sqrt{2})^{\frac{1}{3}}\left(\cos \left(\frac{7 \pi}{12}\right)-i \sin \left(\frac{7 \pi}{12}\right)\right)+$
$=-0.366-0.366 i$
$n^{\text {th }}$ Roots of Unity
The solutions to $z^{n}=1$ are known as the n^{n} roots of unity and are usually given in the form

$$
z=e^{\frac{2 \pi k i}{n}}=\cos \left(\frac{2 \pi k}{n}\right)+i \sin \left(\frac{2 \pi k}{n}\right)
$$

Where $k=0,1,2, \ldots,(n-1)$. We can also express an $n^{\text {th }}$ root of unity as

$$
\omega=\left(e^{\frac{2 \pi i}{n}}\right)^{k}
$$

It follows that the $n^{\text {th }}$ roots of unity are $1, \omega, \omega^{2}, \omega^{3}, \ldots, \omega^{n-1}$, for $k=0,1,2 \ldots,(n-1)$
When we add all the $n^{\text {th }}$ roots of unity together, we form a geometric series that sums to 0 (as $\omega^{n}=1$):

$$
1+\omega+\omega^{2}+\cdots+\omega^{n-1}=\frac{\left(1-\omega^{n}\right)}{1-\omega}=0
$$

Fxample 3: Find the fourth roots of unity and draw the polygon they produce and Arsiagrm. Hex Example 3: Find the fourth roots of
show that $2 \cos \left(\frac{\pi}{2}\right)+\cos (\pi)=-1$

Note that the four roots of unity in Example 3 lie on a circle of modulus 1 . This is true for all $n^{\text {th }}$ roots unity

Solving Geometric Problems

If z_{1} is a root of the equation $z^{n}=a$, whose rot of itvere $1, \omega_{2}, \omega^{3}, \omega^{3}, \omega^{n-1}$, the of $z^{n}=a$

$$
z_{1}, z_{1} \omega, z_{1} \omega^{2}, z_{1} \omega^{3}, \ldots, z_{1} \omega^{n-1}
$$

Geometrically, this means that it is possible to find all the vertices of any n-gon centred at the origin by knowing one vertex and continually rotating that point about the origin by $\frac{2 \pi}{}$.

Example 4: A regular hexagon on an Argand diagram has its centre at the origin and one of its vertices at ($1,-\sqrt{3}$)
a) Find the coordinates of the other five vertices.
b) Represent the roots on an Argand diagram.
c) Calculate the area of the hexagon, leaving your answer in terms of π.

